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Abstract 

Seabed backscatter data collected from multibeam echosounders (MBES) can provide valuable 

information about various sediments types and habitats. The interest of employing different 

acoustic frequencies with the aim of increasing the discrimination performance between different 

sediment types becomes increasingly popular. Although several experimental studies have 

already shown and proven the strong dependency of acoustic backscatter strength on frequency. 

The field of satellite remote sensing has indicated the enormous potential of using multispectral 

data for several decades. However, just recently the R2Sonic 2026 MBES was introduced which 

allows to emit a series of signals over frequencies from 100 kHz to 400 kHz on a ping-by-ping 

basis. This study presents the working steps taken to process multispectral backscatter data. 

Followed by introducing an extension of the Bayesian method for seabed classification to 

multispectral backscatter including the application to a dataset acquired in the Bedford Basin, 

Canada in 2016. It is shown that this data can be properly processed to be used for acoustic 

seabed classification. The Bayesian method is successfully extended to multispectral backscatter 

data producing a so-called multispectral acoustic classification map while accounting for the 

probability of misclassification at a single frequency. The results of the Bayesian method 

indicate that sensing this study area with a frequency of 200 kHz and 400 kHz yields to the 

highest number of acoustic classes. There is, indeed, an increase in discrimination performance 

by using different frequencies. The combination of the most separated frequencies (100 kHz and 

400 kHz) achieves the highest discrimination performance in this study area. These results 

indicate the potential for solving existing ambiguities in the relationship between single-

frequency backscatter and certain sediment types. A correlation of the acoustic classes can only 

be found with soft, mixed and had substrata. The benefit of using several frequencies cannot 

clearly quantitatively assessed on the basis of the existing video footage. Still, a qualitative 

comparison indicates a correlation of more than three seabed types to the acoustic classes and, in 

addition, an improved discrimination between different sediment types by combining 100 kHz, 

200 kHz and 400 kHz to a multispectral acoustic classification map.    
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1. Introduction 

Multi-beam echo-sounders (MBES) have become the most valuable tool for ocean, geological 

and benthic habitat mapping for many years providing high-resolution sediment maps [1]. 

Various different classification strategies and methods employing MBES bathymetry, 

backscatter and their second order derivatives have been developed to characterize the seabed or 

riverbeds in the last two decades [2], thereby aiming to maximize the performance in 

discriminating between different sediment types or seabed features. Acoustic backscatter 

strength is the most common feature used in seabed classification [2]. The backscatter strength is 

related to seabed properties, such as sediment bulk density, seafloor roughness, volume 

heterogeneity, discrete scatterers and sediment layering [3], [4]. The influence of these factors on 

the backscatter strength is dependent on the composition of the seabed, angle of incidence and 

acoustic frequency [4]. Hence, by considering a constant incident angle, the interaction between 

the acoustic signal and the seabed depends solely on the frequency of the transmitted signal. In 

general, the frequency dependency of the backscatter strength is caused by three main factors: i) 

relationship between seabed roughness and acoustic wavelength [5], ii) dominating scattering 

regime, i.e. Rayleigh or geometrical scattering, which is influenced by the relationship between 

acoustic wavelength and particle size [6], [7], and iii) contribution of volume scattering 

influenced by signal penetration [4]. In several lab or field experiments, in which the influence of 

varying frequencies on the backscatter strength was studied, it was shown that specific sediment 

types have different acoustic responses for different frequencies [8], [3], [9]. The first acquisition 

and analysis of multispectral backscatter acquired with a co-located MBES operating at 70-100 

kHz and 200-400 kHz was carried out by Hughes-Clark [10]. The study has shown a clear 

variation in the angular response curve shapes and differences in relative backscatter between the 

frequencies. These results provide promising opportunities to increase the discrimination 

performance of seabed sediments by utilizing different frequencies. However, MBES backscatter 

data is typically collected at one specific frequency or in a narrow band around the central 

frequency. R2Sonic has developed a broadband MBES (R2Sonic 2026), allowing to collect 

multispectral backscatter data using a single system. This MBES emits a series of signals at 100 

kHz, 200 kHz and 400 kHz. In Brown et al. [11], the first multispectral backscatter dataset 

acquired with a single MBES system (R2Sonic 2026) in the Bedford Basin, Canada was 

employed. They introduced a false-color composite image obtained from the three single-
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frequency backscatter mosaics as a visualization tool for multispectral backscatter. 

However, the interest of employing different acoustic frequencies with the aim of increasing 

discrimination performance between sediment types is just at the beginning. The use of 

multispectral MBES data for seabed classification demands an appropriate data processing to 

account for the frequency dependency of environmental and sonar specific variables influencing 

the actual backscatter strength. Secondly, an appropriate classification technique has to be 

developed and applied to multispectral MBES backscatter data. In terrestrial remote sensing, the 

use of multispectral data and their classification has already been carried out and proven well for 

a long time. Acquiring data across a wide spectrum of electromagnetic wavelengths has 

increased the discrimination power of classification routines [12]. These benefits of using 

multiple frequencies were not available for the marine acoustic remote sensing community due 

to the lack of multi-frequency MBES’s and appropriate classification methods in the last years. 

In this study, the Bayesian method for seabed classification, which has already been successfully 

employed in previous studies to single frequency MBES datasets (e.g., [13], [14]), is applied to 

multispectral MBES backscatter data. The method accounts for the natural variability of the 

backscatter strength by assuming that the measured backscatter per beam resulting from a 

number of discrete seabed types corresponds to a sum of Gaussian distributions, where each 

Gaussian corresponds to a distinct seabed type [15]. The technique considers the backscatter 

strength per beam (or incident angle) separately. That means, by considering a constant incident 

angle, the backscatter strength is only dependent on frequency and seabed properties. In addition, 

the classification is independent on beam dependent sonar artefacts and is able to resolve across-

track seafloor type changes on a beam footprint scale. One of the most important features of the 

Bayesian method is the statistical calculation of the optimal number of acoustic classes (AC), 

thus offering objective results.  

As a first goal, this work aims to process the multispectral MBES dataset (100, 200 and 400 

kHz) acquired in the Bedford Basin, Canada, with a particular focus on the frequency dependent 

environmental and sonar specific variables, to provide relative backscatter strength per 

frequency. Secondly, the study aims to develop a suitable classification method for multispectral 

MBES data. For the current research, the Bayesian method for seabed classification is extended 

to be applicable for multispectral backscatter. Finally, an evaluation and quantification of the 
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benefits of using several frequencies for acoustic seabed classification are carried out. 

This paper is organized as follows. Section 2 provides an overview over the theoretical 

background of acoustic backscatter processing and the classification method used in this 

contribution. Section 3 gives an explanation of the study area and the multispectral MBES 

dataset. Section 4 presents the results of the acoustic data processing and the classification of 

multispectral data. In section 5 the results are discussed. Finally, the conclusions are drawn in 

section 6. 

2. Theory 

2.1. Acoustic data processing 

Backscatter values can provide an indication of the nature and physical character of the seafloor. 

However, before any useful information can be extracted, it is necessary that the received 

acoustic signal is processed appropriately to retrieve actual backscatter strength BS. All terms 

affecting the backscatter strength are expressed by the sonar equation (modified from [16]) 

 �� = ��	 − �� − �	 − 	
�	 + 2��	 − 10 log��� (1) 

where EL is the intensity of the received echo which depends on the characteristics of the sonar 

such as source level, SL, receiver gain ��, frequency response of the transmitter 
� and the 

ensonified footprint area A. The transmission loss TL depends on the environmental conditions 

and the travel distance R of the signal to the seabed. It can be written as 

 
�� = 2�� + 40 log���	 

 
(2) 

where α is the absorption coefficient depending on the temperature, salinity, acidity, pressure and 

frequency f. The second term in the Eq. 2 accounts for the energy loss of the signal due to 

geometrical spreading. The ensonified footprint area A is not only affected by the sonar 

characteristics but also by seabed morphology, i.e. the across-track slope ��	and along-track 

slope ��. The ensonified footprint area of the pulse limited regime �� and of the beam limited 

regime ��	are expressed by [17] 
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�� = Ω���  !"##2	sin	'θ− ��(cos	�*�� 
and  

�� = �+Ω��Ω	� 

 

 (3) 

 

(4) 
 

respectively, where c is the speed of sound in water, θ is the beam angle with respect to nadir and 

!"## is the effective pulse length. Ω��	,-.	Ω	� are the beam opening angles for transmission and 

reception and can be calculated for a continuous line array with length L by [18] 

 Ω = /� (5) 

where λ is the wavelength of the transmitted signal given by /=c/f. Considering a constant array 

length the beam width changes with varying frequency. Furthermore, the seabed morphology 

also affects the incident angle of the sound wave on the seabed according to [17] 

 cos	�0� = sin�90 − 2� + cos�90 − 2� ��
31 + ��+��+  (6) 

where 0 is the incident angle considering the local morphology. The incident angle correction 

does not change the backscatter value but it assigns to this value the corresponding true incident 

angle. In environments with a rough seabed morphology, this correction is essential for the 

Bayesian method for seabed classification.  

Accounting for all these factors during the backscatter processing results in relative backscatter 

strength. To retrieve absolute backscatter strength, it requires a full calibration of MBES 

systems. However, as long as the relative variation of backscatter strength with respect to 

varying sediment types and incident angles are preserved within the processing, seabed 

classification can be carried out. 

2.2. Bayesian method 

The Bayesian method for sediment classification employed in this paper was first developed by 

Simons and Snellen [15], where a detailed description of the theory is given, and developed 

further by Amiri-Simkooei [17]. This section provides an overview of the main concept and 
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processing steps taken to generate the sediment maps of the multispectral MBES dataset. 

According to the central limit theorem, backscatter strength can be assumed to follow a Gaussian 

distribution if a sufficient number of scatter pixels are considered for determining the average 

(over the beam footprint) backscatter strength [15]. A scatter pixel represents the instantaneously 

ensonified area of the seafloor by the transmitted pulse of the MBES, i.e. the signal footprint. If 

the frequency and angle of incidence are constant, the backscatter strength is dependent on the 

seabed properties. Thus, if the survey area contains m different sediment types, with specific 

seabed properties, the backscatter histogram of a selected oblique beam of a MBES can be 

represented by a combination of m Gaussian distributions. The model of the histogram for 

measured backscatter values per beam can be expressed as 

 	f'y6 	78	� = 9 		 :	exp	
>

:?@
A	'B6 − BC:(+2D�+: E 

 (7) 

 

with yj the j
th

 backscatter value in the histogram (j=1,…,M, with M the total number of bins in 

the histogram). x is the vector containing the unknown parameters:  x = (BC@, …, BC>, D�@ , …,  

D�> ,  @,	…,  >) with BC: the means, D�G the standard deviations and  : the strengths of the 

Gaussian distributions. The unknown parameters are determined by fitting the modelled 

histogram to the measured histogram. In order to determine the optimal number of Gaussians, the 

H+ goodness of fit test (Chi-square test) can be used, where H+ is defined as 

 	H+ = 9'-6 − I'B6 	7	J�(+D6+
K

6?@
 

 (8) 

 

where -6  denotes the number of measurements per bin of the aforementioned histogram. For -6  a 

Poisson-distribution is postulated. The variances D6+ are thus equal to -6 . The goodness of fit 

statistic is H+ distributed with ν = M – 3m degrees of freedom. The goodness-of-fit criterion is 

then further defined as the reduced-H+ statistic (HL+ = H+/N) having a value close to one for a 

good fit, indicating that the differences between modelled and measured histogram fall within the 

uncertainties of the measurements. The value of O for which a further increase of O does not 

generate a significantly better fit of the model to the histogram, as quantified by the reduced-H+ 

measure, is taken to be the number of seafloor types that can be discriminated in the survey area 

based on the backscatter data. 
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The actual classification is based on the Bayes decision rule. In accordance with the H+ test m 

states or hypotheses, indicated as P:,	Q = 1,… ,O exist. These hypotheses correspond to the m 

seafloor types present in the surveyed area. In the following, the Bayesian decision rule for 

multiple hypotheses is used to define which hypothesis is accepted, i.e. 

 accept				P:						UI		 maxWI'B67PX(Y�PX�Z = I'B67P:�(Y�P:� (9) 

where Y�PX� is the a priori probability of hypothesis PX with i = 1,…,m. Considering that the 

measurements are taken for the first time, all hypotheses are equally likely, which results in 

Y�PX�=1/m. In that regard, the decision rule can  be simplified to 

 accept			P:						UI		 maxWI'B67PX(�Z = I'B67P:�(. (10) 

That means, the hypothesis is selected which maximizing the likelihood I'B67P( for the 

observation B6. Therefore, the intersections of the m Gaussians have to be determined which 

results in m non-overlapping acceptance regions �: defining the so-called acoustic classes. The 

Bayes decision rule enables the calculation of the probabilities of incorrect decision [:X. The 

overlap between the Gaussian distributions represent the area of incorrect decisions (i.e. 

misclassification). Statistically, [:X denotes the probability that P: is true but PX is choosen and 

can be expressed as 

(11) 

 

The values of [:X are contained in the so-called decision matrix and can be used to evaluate the 

probability of misclassification 

2.3. Multispectral seabed classification 

In this study, the decision matrix is employed to evaluate the benefit of using additional 

frequencies to increase the discrimination performance of seabed classification methods. 

According to the Bayes method, each Gaussian distribution obtained from the classification of a 

single frequency MBES dataset represents a sediment type with specific sediment properties. 

However, only those sediment types that shows up as different sediment types at the applied 

frequencies can be distinguished. That means that if two different sediment types have highly 

 [:X = \ I�B|P:�.B^_ . 
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similar acoustic signatures, they will be represented by the same Gaussian. In general, different 

frequencies show different discrimination performance (see Section 1). Therefore, applying the 

Bayesian technique to three MBES datasets acquired in the same area with three different 

frequencies might reveal acoustic classes which do not necessarily represent the same sediment 

type or properties. The spatial correlation between the acoustic classes as obtained for the 

different frequencies provide an estimate of the additional information gathered by the use of 

different frequencies. To account for the known probability of misclassification, the information 

contained in the decision matrix is accounted for when combining the classification results as 

obtained from the different frequencies. 

 

Fig. 1 Sketch of the workflow for multispectral seabed classification based on the Bayesian method. Step 

1 represents the application of the Bayesian method to each frequency separately. Step 2 is the correlation 

of the AC’s obtained from different frequencies while accounting for the probability of misclassification. 

AC combinations indicated with black dots are proven as reliable by the validity check (see Eq. 12) and 

thus determine the three new multispectral acoustic classes (MAC). Whereas the combination indicates 

with a red dot is discarded. Step 3 represents the final map production based on the results of step 2 and 

the assignment of the new MAC’s. 

To statistically assess the actual existence of classes that are revealed solely by combining the 

classification of different frequencies, the probability of misclassification is used. If the validity 
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check is accepted each remaining and a statistically reliable combination of acoustic classes 

represents a new class, which is called multispectral acoustic class (MAC). In the following the 

validity check is explained by considering two frequencies I@ and I+ and two acoustic classes AC 

1 and AC 2 as it is displayed in Fig. 1.  For the combination of AC 1 and AC 1, the validity 

check can be written as follows 

 ,  `ab	c�d				UI	 effeffgefh > 1 − �[@@�#f�[@@�#h 			or			 effeffgehf > 1 − �[@@�#f�[@@�#h (12) 

where j@@ is the number of times that the combination of AC 1 and AC 1 for I@ and I+, 

respectively, occur in the survey area (see Fig. 1). j@+ is the number of times that the 

combination of AC 1 and AC 2 for I@ and I+, respectively, is occurring. j+@ is the number of 

times that the combination of AC 2 and AC 1 for I@ and I+, respectively, is occurring. �[@@�#f	is 

the probability that AC 1 as obtained at I@ is successfully classified (see Eq. 11).  

From Eq. 12 it follows that, if the percentage occurrence of the combination of AC 1 and AC 1 

of the different frequencies is larger than the probability of this combination occurs purely due to 

the probability of misclassification, then the combination is accepted as statistically reliable. 

Additional information are obtained by using different frequencies if more reliable combinations 

than the number of acoustic classes per frequency exist (Step 2 of Fig. 1). The procedure needs 

to be carried out for all AC’s and frequencies to determine all MAC’s. 

3. Study area and dataset 

3.1. Bedford area  

The dataset used in this paper was acquired in the Bedford Basin, Halifax, Nova Scotia by a 

broadband MBES (R2Sonic 2026), which allows the operating frequency to be modified on a 

ping-by-ping basis. The data were collected at three different frequencies (100 kHz, 200 kHz, 

400 kHz). The MBES was pole-mounted on the MV Eastcom. The MBES backscatter is stored 

as a single value of backscatter intensity per beam representing the return level at the bottom 

detection point and as a time-series per beam representing the scatter pixels [16]. In this study, 

the backscatter intensities per beam are considered. The MBES data covers an area of 

approximately 1.84 km
2
 and the water depth ranges between 13 m to 85 m (Fig. 2). A total of 12 

lines were surveyed with approximately 50% overlap. Further, georeferenced video footage were 
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collected within the survey area using a drop-down underwater camera frame fitted with a Sub-C 

underwater camera and lights. The selected area comprises of sediment types ranging from 

bedrock to silt with underlying harder substrata. In addition, different types of benthic flora and 

fauna are visible in the video footages. As reported in [11], the deeper area consist of soft mud 

and partly covered with various benthic flora. Close to the harbor (SW in Fig. 2), the area 

comprised a mixture of hard substrata such as bedrock and boulders with attached epifauna. The 

morphology of the NE area contains settlements of soft sediments and several features which are 

caused by disposal of dredge spoils [11]. This Bedford Basin is chosen for the acoustic 

classification because it has two datasets from different years, 2016 and 2017, which enables the 

comparison and verification of the backscatter processing.   

 

Fig. 2 Bathymetry and location of the survey area (Bedford Basin, Canada). The displayed MBES 

bathymetry was acquired in 2016. 

3.2. Multispectral data  

Bathymetry and backscatter data were collected with the R2Sonic 2026 MBES which was 

configured to collect data at frequencies of 100, 200 and 400 kHz on sequential pings with 

operating settings tuned to achieve full coverage across these frequencies. As system settings 

such as transmit power, gain and pulse length are all accessible to the user or predefined in 

automatic acquisition modes, varying acquisition parameters occur in the employed dataset. 
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Table 1 shows the technical characteristics of the R2Sonic 2026 MBES and some parameters 

used during the acquisition. 

 
Table 1. Characteristic of R2Sonic 2026 MBES used during acquisitions. 

Frequency  100 kHz, 200 kHz, 400 kHz 

Number of beams 256 

Beam width (Ω��x	Ω	�) 2° x 2° (100 kHz), 1° x 1° (200 kHz), 0.5° x 0.5° (400 kHz) 

Swath coverage ~ 65° for starboard and port side 

Nominal pulse Length !k 150 µs 

Pulse type  Shaped CW 

Ping rate Up to 60 Hz 

Receiver Bandwidth B 7500 Hz 

Positioning & motion compensation POS MV Wave Master Inertial Navigation System (INS) 

Sound velocity device Valeport and AML Base X2 

4. Results 

4.1. Backscatter correction 

The multi-frequency MBES datasets, acquired in the Bedford Basin in 2016 and 2017, are 

utilized in this study. Both are subject to changes in source level, receiver gain and a so-called 

“spreading coefficient loss term” [19] across the entire survey area. In addition, a correction term 

for the source level to account for the difference in requested versus actual source level was 

introduced by R2Sonic. Clearly, the freedom and flexibility given by this MBES system to 

change the settings provide some advantages, for example to stay within the dynamic range and 

to receive sufficient acoustic energy, but it also complicates the acoustic data processing and 

may critically affect the backscatter measurements. According to Eq. 1, the received echo level 

EL is corrected for the actual source level SL and the receiver gain �	 (stored �	 is multiplied by 

2 (according to R2Sonic). R2Sonic MBES’s compensate for the transmission loss TL already 

during acquisition. However, the absorption coefficient α and the so-called “spreading 

coefficient loss term” used by the MBES are replaced with physical reasonable values according 

to Eq. 2. A more appropriate α is estimated using the model of Francois and Garrison [20], [21] 

and finally integrated over the depth. The environmental variables of the water column 
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(temperature, pressure and salinity) are received from measured CTD profiles and a pH-value of 

8 is assumed for the calculation. α is highly frequency dependent and a reliable calculation is 

essential for the backscatter processing in general but, in particular, for multispectral backscatter 

data. The values for α and “spreading coefficient loss term” used by the MBES and used in this 

study for the backscatter correction are displayed in Table 2 

Table 2. The absorption and “spreading coefficient loss term” (spread.)  stored in the datagram and the 

used value in the backscatter processing. 

 100 kHz 

α [dB/km] 

200 kHz 

α [dB/km] 

400 kHz 

α [dB/km] 

100 kHz 

spread. [-] 

200 kHz 

spread.  [-] 

400 kHz 

spread. [-] 

stored Bedford 2016 80 80 80 30 30 30 

stored Bedford 2017 23 40 0 35 30 35-55 

used Bedford 2016 23.2 39.4 91.6 40 40 40 

used Bedford 2017 23.3 39.5 91.9 40 40 40 

 

The R2Sonic MBES stores backscatter intensities and backscatter time series in digitized 

pressure units with an unknown scaling due to lacking calibrations. The backscatter intensity 

values per beam are converted to decibel values. Due to lacking calibrations the converted 

backscatter values are unrealistically high as indicated by positive decibel values. Even though 

the relative difference in backscatter is correct, indicated by reliable ARC for specific sediments 

(Fig. 3), a backscatter correction term of 100 dB is added to obtain realistic backscatter values. 

This value is retrieved by comparing the APL-model results with the measured ARC curves from 

a muddy area per incident angle (Fig. 4 and Fig. 3, respectively). Furthermore, a frequency 

response correction term FR is added to the received signal intensity (see Eq. 1) to compensate 

for the acoustic response of the transmitter for the different frequencies. The frequency response 

calculations are a theoretical approximation based on measured transducer characteristics (M. 

Brissette 2018, personal communication, 12. Januar). In addition, the received signal is 

compensated for the ensonified footprint area A to retrieve relative backscatter strength 

according to Eq. 1, 3 and 4. This step is also frequency dependent due to the dependency of the 

widths Ω	� and Ω�� on the wavelength / of the transmitted signal (see Eq. 5). The beam widths 

for the three frequencies are displayed in Table 1. In the pulse limited regime the calculation of 

the footprint area �� requires the effective pulse length !"## (see Eq. 3). It differs from the 
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nominal pulse length !k due to the applied trapezoid filter aiming to suppress spectral leakage. In 

this study, it is assumed that the given receiver bandwidth B stored in the datagrams represents 

the width of the main lobe of the time series signal in the frequency domain at the reception. 

Considering this assumption, !"##	can be calculated by !"## = @
l (Table 2). This results in !"##	of 

133 µm, a decrease of 12% compared to !k. The ensonified footprint area calculation also 

requires the consideration of the local topography which influences the incident angle 0 (see Eq. 

3). The required across-track �� and along-track slopes �� are calculated with respect to the 

heading of the vessels. Finally, the true incident angle 0 is calculated from the beam angle 2 and 

the along- and across track slopes using Eq. 6. 

The result from the described processing steps is the backscatter strength BS as a function of  

incident angle, also known as angular response curve (ARC). To proof the reliability of the 

backscatter corrections, the ARC’s from areas assumed to be relatively homogeneous measured 

in 2016 and 2017 are compared. The approach here is to use data from two different areas of 

sediments, i.e. muddy (area 1) and gravel, boulder (area 2). The results are displayed in Fig. 3. 

For the  majority of the incident angles, the backscatter values of the three frequencies agree 

within less than 1 dB. Except for lower incident angles and around nadir the deviation is up to 

maximum 3 dB. This is explained due to noisy backscatter data at nadir caused by the specular 

reflection and that the track lines are not exactly at the same location. In that regard the same 

incident angle does not necessarily sense the same sediment and, in addition, lower incident 

angles are more affected being more sensitive to sediment changes (see Fig. 4). In conclusion, 

the backscatter correction appears to be successfully applied.  
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Fig. 3 Comparison of the processed angular response curves (ARC) of two different sediment types 

retrieved from the multispectral MBES dataset acquired in 2016 and 2017 in the Bedford Basin. Area 1 

indicates a muddy sediment and Area 2 indicates gravel to boulders. The displayed backscatter mosaic 

(200 kHz, 2016) has a spatial resolution of 2 m by 2 m. 

The shape of the ARC corresponding to area 2 at 200 and 400 kHz is very flat suggesting a 

rough seabed with respect to the wavelength. The ARC of 100 kHz is similar except for a 

significant decrease in backscatter for incident angles larger than 40° at 100 kHz indicating an 

acoustically smoother seabed. The relatively flat ARC including a missing near-nadir peak can 

be explained by the APL-UW (1994) model (Fig. 4), where backscatter strength at 100 kHz for a 

gravelly area do not have a high variation for all incident angles. In area 1, the absolute 

backscatter value is significantly lower compared to area 2 at each frequency, indicating a softer 

and smoother seabed which is confirmed by the video footage showing gravel, boulders and soft 

sediment, respectively. The shape of the ARC’s appear to differ. The 100 kHz ARC has a near-

nadir peak with a decrease in backscatter with increasing incident angles as expected from the 

APL-UW (1994) for fine sediments (Fig. 4). The flatness of the ARC’s shapes increases from 
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200 to 400 kHz indicating that the seabed appears rougher with increasing frequency. In essence, 

the ARC curves show higher acoustic sensitivity per frequency for softer sediments. 

 

Fig. 4 Angular response curves calculated with the APL-model at 100 kHz [5].  

Backscatter mosaics are generated by correcting for the angular dependency using the local Z-

score approach with a sliding window of 100 pings and the averaged backscatter value from 30° 

to 60° (Fig. 5) [22]. No despeckle or anti-aliasing filters are applied to the mosaics to keep the 

mosaics as unfiltered as possible for the verification of the backscatter processing. Some along-

track artefacts are visible, which are probably induced by the local angular correction due to 

seabed changes in across-track direction [23]. However, they do not affect the acoustic 

classification based on the Bayesian method (backscatter is considered per beam separately (see 

Section 2.2)). Still, the backscatter mosaics indicate a reliable backscatter processing. The 

backscatter mosaics show clearly different spatial pattern indicating varying sensitivities at the 

three frequencies for different seabed types. The most spatial variety is visible at 100 kHz. 
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Fig. 5 Backscatter mosaics obtained from a) 100 kHz, b) 200 kHz  and c) 400 kHz. The spatial resolution 

is 2 m by 2 m. Local Z-score with a sliding window of 100 pings is used to correct for the angular 

dependency [22]. 

4.2. Application of the Bayesian method to multispectral backscatter 

The Bayesian method is applied to the relative backscatter strength at each frequency separately. 

Because of the high seabed morphology, the backscatter values per true incident angle are 

considered in this work. The first step is to average the backscatter values over a range of pings 

and incident angels to ensure the assumption of normally distributed backscatter to be valid 

according to the theory of the Bayesian method (Section 2.2).  Accounting for the dependency of 

the number of scatter pixels per beam, the size of the averaging window in across-track direction 

increases from 1.2° to 5° with decreasing incident angle and in the along-track direction from 1 

to 4 pings with increasing water depth.  

The next step involves the identification of the optimal number of classes by fitting Gaussian 

distributions to the measured backscatter histogram per incident angle (according to Eq. 7). Fig. 

6 displays the measured histograms from the 55° (+/- 0.6) incident angle (starboard side) at 100, 

200 and 400 kHz, as an example.  
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Fig. 6 Histogram of measured backscatter obtained from the incident angle range 53.4-54.6 degrees (~54 

degree) for the full survey area.  a) 100 kHz, b) 200 kHz and c) 400 kHz. 

The outer beams are preferably utilized for fitting the Gaussians, and hence identifying the 

number of classes. First of all, larger incident angles include more scatter pixels per area, 

lowering the Gaussian's standard deviation and consequently provide increased geoacoustic 

resolution (see section 2.2). Second, the incident angles between 30° and 70° provide the most 

discrimination potential. This is displayed in Fig. 4 where the backscatter strength is expressed as 

a function of incident angles.   

However, incident angles greater than 60° are found to hold very low backscatter strength values 

and tend to be noisy. Accounting for these issues in the present datasets and to receive a robust 

statistical estimate, a range of incident angles (considering the local topography) from 40° to 57° 

degrees are selected as most suitable and used for estimating the optimal number of acoustic 

classes per frequency. The Chi-square test as applied to the incident angles from 40° to 57° of 

the starboard and port side at 100, 200 and 400 kHz are displayed in Fig. 7. 

 

Fig. 7 Chi-square test applied to a) 100 kHz, b) 200 kHz and c) 400 kHz for incident angles from 40° to 

57°. 

A visual inspection of the results of the Chi-square tests already indicates an optimal fit to the 

measured histograms of 4 Gaussians for the 100 kHz dataset and 5 Gaussians for the 200 and  

400 kHz dataset, respectively. Furthermore, an objective evaluation of the Chi-square values 
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accounting for the improvement of the fit versus the increase of the number of Gaussians yields 

to a majority suggesting 4 Gaussians for 100 kHz and 5 Gaussians for 200 and 400 kHz, 

respectively (see Section 2.2). To further demonstrate the validity of the results, the fits of the 

modelled Gaussian distributions to the measured histograms of the 54° incident angle are 

displayed in Fig. 8. Fig. 8 a) and b) show that an increase from 4 to 5 Gaussian distributions does 

not improve the fit to the measured backscatter data at 100 kHz. In contrast, the representation of 

the measured backscatter of 200 and 400 kHz is significantly improved by using 5 instead of 4 

Gaussian distributions. These findings are observed for the majority of the considered angles. 

The results indicate that the frequencies of 200 and 400 kHz are able to discriminate one more 

class compared to 100 kHz in this study site. Even though it is decided to select 5 classes for 200 

and 400 kHz, the Chi-square test, shown in Fig. 8 b) and c), indicates that 200 kHz reaches lower 

Chi-square values slightly earlier than 400 kHz indicating higher discrimination for 400 kHz. 

 

Fig. 8 Model fits to the histogram of the measured backscatter data mn (blue) per 0.5 dB bin on at a, b) 100 

kHz, c, d) 200 kHz and e, f) 400 kHz are displayed. The modelled p�on|q� histogram calculated by using 

a, c, e) 4 Gaussian distributions and b, d, f) 5 Gaussian distributions is shown in red. The corresponding 

Gaussians are displayed in black.  
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For the generation of the final acoustic class maps the incident angles from 10° to 60° are 

considered. The backscatter data around nadir are prone to specular reflection and therefore too 

noisy to provide reliable classification. The final acoustic class maps for 100, 200 and 400 kHz 

are displayed in Fig. 9. 

 

Fig. 9 Acoustic classification maps for a) 100 kHz, b) 200 kHz and c) 400 kHz. The spatial resolution is  

5 m by 5 m. White spots indicate no data caused by neglected backscatter data at nadir. 

 

The SE part of the study area shows the same spatial structures in each classification map. In 

particular AC 4 at 100 kHz and AC 5 at 200 and 400 kHz cover this SE part of the seabed 

indicating a correlation with the same seabed type. The acoustic classification of the NW area 

demonstrates different spatial patterns, in particular between 100 and 400 kHz. In Fig. 9 a) and 

partly in Fig. 9 b) circular to elongated features are visible and classified as AC 3 in 100 and in 

200 kHz. However, in the maps of 100 kHz these features are more pronounced. In the 400 kHz  

map the features are not apparent and the locations are classified as AC 2 or AC1 like the 

surrounding seabed. A second noticeable difference between the acoustic classification maps is 

the spatial distribution of AC 2 and AC1. AC 2 (yellow) covers a large area in the northern part 

of the 200 and 400 kHz map compared to a very limited extent of AC 2 and a larger extent of AC 

1 in the 400 kHz map. This indicates that AC 1 and AC 2 of 100 kHz represent different seabed 

properties than AC 1 and AC 2 of 200 and 400 kHz. In general, the most differences are visible 

between the ASC maps obtained at 100 and 400 kHz. 

4.3. Evaluation of the benefit using multiple frequencies 

To evaluate the information content of each frequency and the additional information by 

combining different frequencies, the spatial correlation between the individual AC’s obtained 

from the different frequencies are calculated (see section 2.3). In general, almost all AC’s 
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combinations are more or less present (it is not shown here). To determine which combinations 

are significant and do not occur due to misclassification, Eq. 12 is used to reveal the statistically 

reliable correlations (see Section 2.3). The accepted combinations are visualized in Fig. 10. The 

size of the circles represents the number of times that a particular combination occurs in the 

survey area. The larger the circle the higher the number of locations where the AC’s are in 

agreement. 

 

Fig. 10 Correlation plot of a) 400 and 200 kHz, b) 200 and 100 kHz and c) 400 and 100 kHz. The size of 

the circles represent the number of the AC’s combination occur in the survey area. To obtain theses plots 

Step 1 and 2 described in Section 2.3 are applied. 

The benefit of using more than one frequency can be identified if an AC obtained from one 

frequency correlates to more than one AC of the other frequency. The correlation plot of 200 and 

400 kHz (Fig. 10a) shows a strong correlation between the same AC’s. In addition, two more 

combinations are obtained (AC 2/3, AC 3/ 4; 400/200 kHz). In Fig. 10 b) there are two additional 

combinations represented by AC 2 and AC 1 as well as AC 3 and AC 2 from 100 and 200 kHz, 

respectively. However, in Fig. 10 c) there are three additional and clearly separated combinations 

visible (AC 2/ 1, AC 2/ 3, AC 4/3; 400/100 kHz). In essence, the most statistically reliable 

combinations (equal to 8, see Fig. 10c) are obtained from the correlation of the AC’s of 100 and 

400 kHz. This indicates that most of the information about the seabed in this study area can be 

retrieved from 100 and 400 kHz. This confirms the visual interpretation of Fig. 9. 

4.4. Combination of multiple frequencies 

In this section the information provided at each frequency are combined with the aim to generate 

a multispectral acoustic classification map. The general workflow consists of three steps which 

are displayed in Fig. 1. Step 1 and 2 are carried out in Section 4.2 and 4.3. In the final step 3, the 

new multispectral acoustic classes (MAC’s) are defined from the statistically reliable 

combinations of the original AC’s obtained per frequency. Each combination representing a 
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unique information about the seabed properties are considered as a new MAC yielding to 9 

MAC’s in total (Fig. 11) (see section 4.3). The data points considered as unreliable in step 2 are 

not assigned to a MAC. Therefore, the coverage of the final map is slightly less compared to the 

maps of the single frequencies.  

 

Fig. 11 Definition of MAC by using the reliable combinations of AC’s obtained from the three 

frequencies. MAC revealed by the AC’ combinations of a) 400 and 200 kHz, b) 200 and 100 kHz and c) 

400 and 100 kHz. The colors indicate the different MAC’s. The corresponding legend is displayed in Fig. 

12. 

The final multispectral acoustic classification map considering the 9 MAC is shown in Fig. 12 

Multispectral acoustic classification map obtained from the combination of the individual single 

frequency maps (Fig. 9). The spatial resolution is 5 m by 5 m.. The different spatial patterns observed 

in each of the acoustic classification maps (100, 200 and 400 kHz, Fig. 1) are now all visible in 

the combined map. The circular to elongated features mainly visible in the 100 kHz map and less 

pronounced in the 200 kHz map are clearly visible in the combined map. In addition, they are 

now distinguishable from the major high acoustic class structure in the SE of the study area and 

from the structure in the NW which are assigned to the same AC as the circular structures in the 

100 and 200 kHz map. Also the SW-NE stripe (according to Brown et al. [6], these features 

represent trawl marks) are clearly distinguished in the final map from the surrounding seabed. 

This feature is only clearly visible in the 100 kHz and slightly in the 200 kHz map but doesn’t 

show up in the 400 kHz map. The softer sediments (lower AC and lower backscatter, 

respectively) show a higher discrimination in the final MAC map. AC 1 of 100 kHz (dark green 

in Fig. 9a) and AC 1 and AC 2 of 200 and 400 kHz (dark green and yellow in Fig. 9b and c) are 

converted to three separated MAC’s in the final map indicating a reliable geological spatial 

pattern. However, it has to be mentioned that the combined  map appears to be slightly noisier. 

One major reason is that the noise inherent in each of the original maps caused by remaining 
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backscatter artefacts or misclassification propagates and amplifies into the final map. Another 

reason is that 9 classes exhibit a higher total probability of misclassification than the 4 or 5 

classes at the single frequencies. 

 

Fig. 12 Multispectral acoustic classification map obtained from the combination of the individual single 

frequency maps (Fig. 9). The spatial resolution is 5 m by 5 m. 

4.5. Correlation analysis of ground truth and acoustic classes 

In this section the results of the Bayesian technique are quantitatively and qualitatively compared 

to the video footage with three aims: 1) correlate AC and MAC to sediments or seabed features, 

2) produce a sediment map from the AC and MAC map and 3) verify the benefit of using multi 

frequencies. For the qualitative comparison the seabed visible on the video footage is categorized 

into distinct classes. Three video footage categories are chosen: soft, mixed and hard. “Hard” 

represents all areas where the entire area is covered with boulders, shells or gravel (e.g., video 

footage sample S1 in Fig. 14). “Mixed” displays areas where a mixture of soft sediments and 

boulders are observed (e.g., video footage sample S4 in Fig. 14). “Soft” contains all areas where 

soft sediments are present (e.g., video footage samples S3 and S2 in Fig. 14). A finer distinction 
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of the category “soft” is not carried out due to following reasons: i) a clear distinction between 

mud, silt or fine sand is not feasible on the basis of the existing video footage, ii) the amount and 

consistency of benthic flora and fauna or gas releases vary significantly. The grain size and the 

coexistence with benthic flora and fauna as well as gas seeps can highly influence the backscatter 

strength [13], [24], [25], [26]. The significance of the grain size is also indicated by the modelled 

backscatter strength in Fig. 4. All this would hamper a reliable comparison to the acoustic 

classification results with a finer distinction than three categories. 

The correlation of AC’s and MAC’s with the three video footage categories are displayed in Fig. 

13, in which the mode (most frequently occurring value) of the AC’s in a radius of 10 m around 

the video footage is calculated and compared to the video footage. For all frequencies there is a 

correlation of AC 1 and AC 2  with the soft sediment class and a good correlation of the highest 

AC with the hard substrata. However, AC 3 represents mostly the soft substrata but also occurs 

in the mixed category. In general, the mixed category is distributed over the intermediate to the 

highest classes. Considering the MAC results there is no improvement compared to the single 

frequencies observed.  

 

Fig. 13 Correlation plot of video footage category (soft, mixed, hard) with AC’s and MAC’s obtained 

from the Bayesian classification. Numbers indicate how often the categorized video footage samples (see 

Fig. 2) are represented by a specific AC or MAC. 

Because of the complex seabed and, therefore, the relatively coarse distinction of the video 

footage in only three categories, a more detailed comparison of the classification results and the 

video footage is carried out in Fig. 14 and Fig. 15. Clearly, the highest AC (AC 4 for 100 kHz, 

AC 5 for 200 and 400 kHz and MAC 9 for the combined map) represents a seabed extensively 

covered with boulders, shells, and gravel, as indicated by video footage sample S1 (sample 

means here the location of the video footage). The sample S4 displays a mixture of boulders 

(coral reef) with soft sediments. In the AC map of 100 kHz (Fig. 14a) the sample S4 has the 

same AC as sample S1. In the 200 and 400 kHz map, the sample is located at the second highest 
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AC (i.e. AC 4), separating the seabed type of S1 from S4. Due to the combination of the different 

frequencies, the MAC also indicates a different seabed type. The sample S2 and S3 are assigned 

to the soft sediment category in Fig. 13, but a more detailed observation indicates differences in 

the seabed composition. S2 consists of a soft sediment slightly covered with benthic flora, 

whereas S3 consists of soft sediments combined with some different benthic flora  as well as 

benthic fauna and gas seeps. In the 100 and 400 kHz maps they are clearly separated by at least 

one AC, which is in contrast with the 200 kHz map. In the combined map of MAC’s the seabed 

from S1 and S2 are even more separated. The detailed analysis of the video footage with respect 

to the acoustic classification results per frequency indicates that, indeed, the AC’s represent 

different seabed types. It is also shown that the AC’s are able to distinguish between the soft 

sediments. However, the discrimination performance per frequency varies between the different 

sediment types. By combining the results of the different frequencies into a single map (Fig. 14d) 

the information gathered from each frequency are merged. Even though the combined map 

appears to be noisier, it indicates a more distinct discrimination of the seabed types. 

 

Fig. 14 Zoomed in area of the acoustic classification maps generated by the Bayesian method from a) 100 

kHz, b) 200 kHz, c) 400 kHz and d) all frequencies. The area is indicated in Fig. 3 as area 3. The 

corresponding video footage to the samples S1 to S4 are displayed in Fig. 15. 
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Fig. 15 Video footage of samples S1 to S4 indicated in Zoomed in area 3 of Fig 14. 

5. Discussion 

The Bayesian technique is applied to the processed MBES backscatter of the 100, 200 and 400 

kHz datasets separately and the results are combined to a final multispectral acoustic 

classification map by accounting for the probability of misclassification. The main results with 

respect to the benefit of using several frequencies are threefold: 1) 200 and 400 kHz distinguish 

more acoustic classes than 100 kHz, 2) there is a benefit of using different frequencies for seabed 

classification with respect to the frequency and study area and 3) combining 100 and 400 kHz 

reveals the most additional information about the seabed. The first results are unexpected 

considering the backscatter mosaics indicating more spatial patterns at 100 kHz (Fig. 5a) (which 

was described in [11], but is also visible in the acoustic classification maps in Fig. 9). However, 

the analysis of the backscatter per incident angle, performed by the histogram fitting and the Chi-

square test, indicates that more classes can be distinguished with increased frequency. Even 

though more spatial patterns are visible in the 100 kHz map they indicate similar backscatter 

signatures and shows up as the same acoustic classes. For instance, the circular structures, are 

hardly distinguishable from the seabed in the SW (consisting of a mixture of soft sediments and 

boulders) or NE (probably a large amount of benthic flora according to the video footage), 

whereas at 400 kHz these areas are clearly separated (Fig. 9). In the study of Hughes Clarke [10] 

where the MBES backscatter response of different frequencies (100, 200, 300 and 400 kHz) in 
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different sedimentological areas were investigated, more spatial pattern and a clearer distinction 

of the main facies at lower frequencies were observed. In addition, a high potential for higher 

frequencies (300 kHz) to divide the seabed types into further subclasses, which cannot be easily 

separated at 100 kHz, was observed in [10]. This is in correspondence with the first and third 

result presented in this paper (see above). Another observation, found in [10] but also indicated 

in a previous study [9], is that the frequency dependency is lower for rougher sediments and 

consequently the discrimination power gained by using different frequencies is larger for softer 

sediments. This is also observed in this study. The ARC’s of the boulder/gravel sediments have 

very similar shapes whereas the ARC’s of the soft sediments differ significantly (Fig. 3). The 

increased discrimination performance using different frequencies for smoother sediments is also 

shown in the acoustic class maps where the soft sediments are classified differently per 

frequency but the boulder/gravel sediments are represented consistently by the highest AC in 

each frequency (Fig. 9). 

In this study, the results are mainly based on the analysis and interpretation of the acoustic 

backscatter signal considering an appropriate backscatter processing accounting for all sonar and 

environmental variables and a classification method accounting for the natural variability of the 

backscatter strength. Using the existing video footage only these results cannot clearly be 

verified. To investigate to what degree each AC and also each MAC represent different surficial 

or subsurface sediment characteristics, more video footage and especially physical samples (e.g., 

Box corer, Van Veen sampler or shallow cores) from the seabed and subsurface on predefined 

locations are needed. In particular, a grain size analysis is required to verify a correspondence of 

the lower AC’s and MAC’s with different sediment types. For instance, based on the video 

footage a discrimination between mud, silt, fine or medium sand is not possible. The verification 

of one of the most obvious improvements by using several frequencies in this study site, i.e. the 

clear distinction of the circular structures from the surrounding seabed in the combined MAC 

map (Fig. 12), would require ground truthing of the subsurface. According to Brown et al. [11] 

these structures represent dredge spoil features covered with mud. Due to the higher signal 

penetration of the lower frequencies (100 kHz), especially in very soft sediments, the backscatter 

is more influenced by the buried structures than by the actual seabed surface. This means that the 

acoustic maps of the different frequencies, and consequently the combined map, do not 

necessarily represent exactly the same part of the seabed with respect to depth. To what extent 
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different depths of the seabed contribute to the total backscatter strength can be described by the 

reflection coefficient and the absorption of sound in sediments. The reflection coefficient can be 

expressed as [18] 

 R�0@� = s+ + tu0@ − s@ @ tu0+s+ + tu0@ + s@ @ tu0+ (13) 

where (s@ @� and (s+ +� are the density and sound velocity of media 1 (water column) and 

media 2 (seabed). The incident angle is 0@ (see Eq. 6) and the refracted angle is 0+. The 

absorption coefficient in sediments �v can be approximated with [27] 

 �v = 10log	�`w'�xhw@�+y#�(z{ � (14) 

where x is the distance in the sediment layer and D is a constant representing the internal 

structure of the sediment. Both equations show the influence of the sediment properties, density 

as well as frequency and incident angle on the penetration depth of the signal and consequently 

on the contribution of the volume backscattering to the total backscatter strength. The 

multispectral Bayesian technique accounts for the incident angle and frequency dependency 

while assigning relative backscatter values to acoustic classes. That comes along with the 

classification applied to incident angle and frequency separately which enables the multispectral 

Bayesian technique, theoretically, to retrieve acoustic classes representing different depths of the 

seabed. This is an advantage over classification techniques based on the backscatter mosaic 

where the angular information are removed by an angular response curve correction (e.g., [13], 

[28]).  

6. Conclusions 

In this study the Bayesian classification method is introduced for multispectral MBES 

backscatter. The classification method accounts for the natural variability of the backscatter 

strength by assuming the measured  backscatter per beam and frequency to result from a number 

of discrete seafloor types that each correspond to a Gaussian distribution. Therefore, the 

multispectral Bayesian method employs the MBES backscatter per beam and frequency. In that 

regard, the acoustic classes are defined dependent on frequency and incident angle allowing for 

an evaluation and comparison among the acoustic classes obtained from different frequencies. 
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The acoustic classification results obtained from the different frequencies are combined to a so-

called multispectral acoustic classification map by accounting for the probability of 

misclassification per frequency and acoustic class. 

The multispectral Bayesian technique is applied to a multi-frequency (100, 200 and 400 kHz) 

backscatter dataset acquired with an R2Sonic 2026 MBES in the Bedford Basin, Canada in 2016. 

The systems allows to modify the operating frequency on a ping-by-ping basis. It is shown that 

the multispectral backscatter can be properly processed to be used for seabed classification. The 

main results with respect to the benefit of using several frequencies are threefold: 1) 200 and 400 

kHz distinguish more acoustic classes than 100 kHz, 2) there is a benefit of using different 

frequencies for seabed classification with respect to the frequency and study area and 3) 

combining 100 and 400 kHz reveals the most additional information about the seabed. However, 

a quantification of the gained benefit from different frequencies using the existing video footage 

cannot clearly be accomplished for this study area. Additional video footage, physical grab 

samples from the seabed and subsurface would be required at predefined locations. Some 

correlation of the acoustic classes with the video footage could only be found for soft, mixed and 

hard substrata. A finer distinction is not feasible due to the complex seabed composition 

consisting of irregular distributed benthic flora and fauna and boulders as well as the presence of 

gas seeps. In addition, the grain sizes of the soft sediment is unknown hampering a finer 

classification as well. Still, a qualitative comparison to the video footage reveals a correlation of 

different seabed types to the acoustic classes and also an improved discrimination by combining 

100, 200 and 400 kHz to a multispectral acoustic classification map. In essence, multispectral 

backscatter provides high potential to solve ambiguities in the relationship between single-

frequency backscatter and certain sediment types. 

The research of multispectral MBES backscatter is just in its initial implementation stage. The 

acoustic response of different sediment types for different frequencies has to be studied in more 

detail, which requires an extensive ground truthing. The use of even lower frequencies than 100 

kHz appears to be promising for seabed classification. However, using low frequencies, it has to 

be investigated to what extent the backscatter strength represents the seabed or the very shallow 

subsurface due to the increased penetration of the signal. Finally, the establishment of reference 

areas for MBES backscatter calibration will provide promising opportunities to calibrate and 

secure an appropriate processing of multispectral backscatter. 
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